Seong-Lyong GONG Byung-Gook KIM Jang-Won LEE
In this paper, we study an opportunistic scheduling and adaptive modulation scheme for a wireless network with an XOR network coding scheme, which results in a cross-layer problem for MAC and physical layers. A similar problem was studied in [2] which considered an idealized system with the Shannon capacity. They showed that it may not be optimal for a relay node to encode all possible native packets and there exists the optimal subset of native packets that depends on the channel condition at the receiver node of each native packet. In this paper, we consider a more realistic model than that of [2] with a practical modulation scheme such as M-PSK. We show that the optimal policy is to encode native as many native packets as possible in the network coding group into a coded packet regardless of the channel condition at the receiver node for each native packet, which is a different conclusion from that of [2]. However, we show that adaptive modulation, in which the constellation size of a coded packet is adjusted based on the channel condition of each receiver node, provides a higher throughput than fixed modulation, in which its constellation size is always fixed regardless of the channel condition at each receiver node.
Terumasa TATENO Ryutaroh MATSUMOTO Tomohiko UYEMATSU
We show the sufficient conditions for coding by nodes such that every sink can decode all information multicasted by the single source when there exists time-varying delay of information transmission at links in the network coding.
It has been proved that wireless network coding can increase the throughput of multi-access system [2] and bi-directional system [5] by taking the advantage of the broadcast nature of electromagnetic waves. In this paper, we introduce the wireless network coding to cooperative multicast system. We establish a basic 2-source and 2-destination cooperative system model with arbitrary number of relays (2-N-2 system). Then two regenerative network coding (RNC) protocols are designed to execute the basic idea of network coding in complex field (RCNC) and Galois field (RGNC) respectively. We illuminate how network coding can enhance the throughput distinctly in cooperative multicast system. Power allocation schemes as well as precoder design are also carefully studied to improve the system performance in terms of system frame error probability (SFEP).
Kaikai CHI Xiaohong JIANG Susumu HORIGUCHI
Recently, a promising packet forwarding architecture COPE was proposed to essentially improve the throughput of multihop wireless networks, where each network node can intelligently encode multiple packets together and forward them in a single transmission. However, COPE is still in its infancy and has the following limitations: (1) COPE adopts the FIFO packet scheduling and thus does not provide different priorities for different types of packets. (2) COPE simply classifies all packets destined to the same nexthop into small-size or large-size virtual queues and examines only the head packet of each virtual queue to find coding solutions. Such a queueing structure will lose some potential coding opportunities, because among packets destined to the same nexthop at most two packets (the head packets of small-size and large-size queues) will be examined in the coding process, regardless of the number of flows. (3) The coding algorithm adopted in COPE is fast but cannot always find good solutions. In order to address the above limitations, in this paper we first present a new queueing structure for COPE, which can provide more potential coding opportunities, and then propose a new packet scheduling algorithm for this queueing structure to assign different priorities to different types of packets. Finally, we propose an efficient coding algorithm to find appropriate packets for coding. Simulation results demonstrate that this new COPE architecture can further greatly improve the node transmission efficiency.
Kunihiko HARADA Hirosuke YAMAMOTO
In a network with capacity h for multicast, information Xh=(X1, X2, , Xh) can be transmitted from a source node to sink nodes without error by a linear network code. Furthermore, secret information Sr=(S1, S2, , Sr) can be transmitted securely against wiretappers by k-secure network coding for k h-r. In this case, no information of the secret leaks out even if an adversary wiretaps k edges, i.e. channels. However, if an adversary wiretaps k+1 edges, some Si may leak out explicitly. In this paper, we propose strongly k-secure network coding based on strongly secure ramp secret sharing schemes. In this coding, no information leaks out for every (Si1, Si2, ,Sir-j) even if an adversary wiretaps k+j channels. We also give an algorithm to construct a strongly k-secure network code directly and a transform to convert a nonsecure network code to a strongly k-secure network code. Furthermore, some sufficient conditions of alphabet size to realize the strongly k-secure network coding are derived for the case of k < h-r.
Takahiro MATSUDA Taku NOGUCHI Tetsuya TAKINE
In this paper, we consider the broadcast storm problem in dense wireless ad hoc networks where interference among densely populated wireless nodes causes significant packet loss. To resolve the problem, we apply randomized network coding (RNC) to the networks. RNC is a completely different approach from existing techniques to resolve the problem, and it reduces the number of outstanding packets in the networks by encoding several packets into a single packet. RNC is a kind of linear network coding, and it is suited to wireless ad hoc networks because it can be implemented in a completely distributed manner. We describe a procedure for implementing the wireless ad hoc broadcasting with RNC. Further, with several simulation scenarios, we provide some insights on the relationship between the system parameters and performance and find that there is the optimal length of coding vectors for RNC in terms of packet loss probability. We also show a guideline for the parameter setting to resolve the broadcast storm problem successfully.
Joon-Sang PARK Uichin LEE Soon Young OH Mario GERLA Desmond Siumen LUN Won Woo RO Joonseok PARK
Vehicular ad hoc networks (VANET) aims to enhance vehicle navigation safety by providing an early warning system: any chance of accidents is informed through the wireless communication between vehicles. For the warning system to work, it is crucial that safety messages be reliably delivered to the target vehicles in a timely manner and thus reliable and timely data dissemination service is the key building block of VANET. Data mulling technique combined with three strategies, network codeing, erasure coding and repetition coding, is proposed for the reliable and timely data dissemination service. Particularly, vehicles in the opposite direction on a highway are exploited as data mules, mobile nodes physically delivering data to destinations, to overcome intermittent network connectivity cause by sparse vehicle traffic. Using analytic models, we show that in such a highway data mulling scenario the network coding based strategy outperforms erasure coding and repetition based strategies.
Ning HU Xiaofeng ZHONG Ming ZHAO Jing WANG
The fairness solution without deteriorating the system sum-rate is a challenge under a total energy constraint. One regenerative strategy is proposed to improve the fairness for bi-directional three-node relaying, which is based on decode-and-forward technique with network coding and power optimization. In this letter, the application of network coding decreases the number of transmission phases from traditional four phases to three phases. Moreover, the proposed power optimization algorithm can be applied in practical system, which transforms max-min optimization problem to linear programming (LP) with low complexity. Numerical simulations shows this strategy enhances the minimum of unidirectional transmission rate up to 94% as compared to a four-phase bi-directional strategy, and up to 46% as compared to the three-phase bi-directional strategy with equal-power allocation.
We give a centralized deterministic algorithm for constructing linear network error-correcting codes that attain the Singleton bound of network error-correcting codes. The proposed algorithm is based on the algorithm by Jaggi et al. We give estimates on the time complexity and the required symbol size of the proposed algorithm. We also estimate the probability of a random choice of local encoding vectors by all intermediate nodes giving a network error-correcting codes attaining the Singleton bound. We also clarify the relationship between the robust network coding and the network error-correcting codes with known locations of errors.
Taku NOGUCHI Takahiro MATSUDA Miki YAMAMOTO
Multicast transmission, which can send the same information simultaneously to multiple users, is a key technology in content delivery networks. In this paper, we discuss a new multicast architecture with network coding proposed by Li et al. , which breaks limitation of existing IP multicast in terms of network resource utilization. Network coding based multicast can achieve the max-flow, which is the theoretical upper bound of network resource utilization. However, the max-flow transmission is not always effective and may not be robust against congestion because it maximally uses link capacity of multicast distribution tree. In this paper, we first introduce a load balancing method of network coding as an alternative use to the max-flow transmission. Next, we study the feasibility of network coding based multicast architecture from performance aspect and evaluate the network coding in terms of the max-flow and load balancing with a computer simulation. There has been no evaluation of network coding in practical network environment with packet losses and propagation delay. We also describe required key techniques and technical problems to implement network coding on the current IP networks. Our results will offer valuable insight for designing the future Internet with higher and more effective network utilization.